Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.197
Filtrar
1.
Sci Total Environ ; 925: 171675, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485022

RESUMO

Globally rising antibiotic-resistant (AR) and multi-drug resistant (MDR) bacterial infections are of public health concern due to treatment failure with current antibiotics. Enterobacteria, particularly Escherichia coli, cause infections of surgical wound, bloodstream, and urinary tract, including pneumonia and sepsis. Herein, we tested in vitro antibacterial efficacy, mode of action (MoA), and safety of novel amino-functionalized silver nanoparticles (NH2-AgNP) against the AR bacteria. Two AR E. coli strains (i.e., ampicillin- and kanamycin-resistant E. coli), including a susceptible strain of E. coli DH5α, were tested for susceptibility to NH2-AgNP using Kirby-Bauer disk diffusion and standard growth assays. Dynamic light scattering (DLS) was used to determine cell debris and relative conductance was used as a measure of cell leakage, and results were confirmed with transmission electron microscopy (TEM). Multiple oxidative stress assays were used for in vitro safety evaluation of NH2-AgNP in human lung epithelial cells. Results showed that ampicillin and kanamycin did not inhibit growth in either AR bacterial strain with doses up to 160 µg/mL tested. NH2-AgNP exhibited broad-spectrum bactericidal activity, inhibiting the growth of all three bacterial strains at doses ≥1 µg/mL. DLS and TEM revealed cell debris formation and cell leakage upon NH2-AgNP treatment, suggesting two possible MoAs: electrostatic interactions followed by cell wall damage. Safety evaluation revealed NH2-AgNP as noncytotoxic and antioxidative to human lung epithelial cells. Taken together, these results suggest that NH2-AgNP may serve as an effective and safer bactericidal therapy against AR bacterial infections compared to common antibiotics.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Humanos , Antibacterianos/toxicidade , Escherichia coli , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Bactérias , Ampicilina/farmacologia , Canamicina/farmacologia , Testes de Sensibilidade Microbiana
2.
Aquat Toxicol ; 270: 106883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503038

RESUMO

The escalating use of silver nanoparticles (AgNPs) across various sectors for their broad-spectrum antimicrobial capabilities, has raised concern over their potential ecotoxicological effects on aquatic life. This study explores the impact of AgNPs (50 µg/L) on the marine clam Ruditapes philippinarum, with a particular focus on its gills and digestive glands. We adopted an integrated approach that combined in vivo exposure, biochemical assays, and transcriptomic analysis to evaluate the toxicity of AgNPs. The results revealed substantial accumulation of AgNPs in the gills and digestive glands of R. philippinarum, resulting in oxidative stress and DNA damage, with the gills showing more severe oxidative damage. Transcriptomic analysis further highlights an adaptive up-regulation of peroxisome-related genes in the gills responding to AgNP-induxed oxidative stress. Additionally, there was a noteworthy enrichment of differentially expressed genes (DEGs) in key biological processes, including ion binding, NF-kappa B signaling and cytochrome P450-mediated metabolism of xenobiotics. These insights elucidate the toxicological mechanisms of AgNPs to R. philippinarum, emphasizing the gill as a potential sensitive organ for monitoring emerging nanopollutants. Overall, this study significantly advances our understanding of the mechanisms driving nanoparticle-induced stress responses in bivalves and lays the groundwork for future investigations into preventing and treating such pollutants in aquaculture.


Assuntos
Bivalves , Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Prata/análise , Poluentes Químicos da Água/toxicidade , Bivalves/metabolismo , Brânquias
3.
J Hazard Mater ; 469: 134052, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493625

RESUMO

Globally extensive research into how silver nanoparticles (AgNPs) affect enzyme activity in soils with differing properties has been limited by cost-prohibitive sampling. In this study, customized machine learning (ML) was used to extract data patterns from complex research, with a hit rate of Random Forest > Multiple Imputation by Chained Equations > Decision Tree > K-Nearest Neighbors. Results showed that soil properties played a pivotal role in determining AgNPs' effect on soil enzymes, with the order being pH > organic matter (OM) > soil texture ≈ cation exchange capacity (CEC). Notably, soil enzyme activity was more sensitive to AgNPs in acidic soil (pH < 5.5), while elevated OM content (>1.9 %) attenuated AgNPs toxicity. Compared to soil acidification, reducing soil OM content is more detrimental in exacerbating AgNPs' toxicity and it emerged that clay particles were deemed effective in curbing their toxicity. Meanwhile sand particles played a very different role, and a sandy soil sample at > 40 % of the water holding capacity (WHC), amplified the toxicity of AgNPs. Perturbation mapping of how soil texture alters enzyme activity under AgNPs exposure was generated, where soils with sand (45-65 %), silt (< 22 %), and clay (35-55 %) exhibited even higher probability of positive effects of AgNPs. The average calculation results indicate the sandy clay loam (75.6 %), clay (74.8 %), silt clay (65.8 %), and sandy clay (55.9 %) texture soil demonstrate less AgNPs inhibition effect. The results herein advance the prediction of the effect of AgNPs on soil enzymes globally and determine the soil types that are more sensitive to AgNPs worldwide.


Assuntos
Nanopartículas Metálicas , Solo , Solo/química , Prata/toxicidade , Prata/química , Argila , Areia , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
4.
Food Chem Toxicol ; 186: 114577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458532

RESUMO

Silver nanoparticles (AgNPs) have been widely used in biomedicine and cosmetics, increasing their potential risks in neurotoxicity. But the involved molecular mechanism remains unclear. This study aims to explore molecular events related to AgNPs-induced neuronal damage by RNA-seq, and elucidate the role of Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells synaptic degeneration induced by AgNPs. This study found that cell viabilities were decreased by AgNPs in a dose/time-dependent manner. AgNPs also increased protein expression of PINK1, Parkin, synaptophysin, and inhibited PGC-1α, MAP2 and APP protein expression, indicating AgNPs-induced synaptic degeneration involved in disturbance of mitophagy and mitochondrial biogenesis in HT22 cells. Moreover, inhibition of AgNPs-induced Ca2+/CaMKII activation and Drp1/ROS rescued mitophagy disturbance and synaptic degeneration in HT22 cells by reserving aforementioned protein express changes except for PGC-1α and APP protein. Thus, AgNPs-induced synaptic degeneration was mediated by Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells, and mitophagy is the sensitive to the mechanism. Our study will provide in-depth molecular mechanism data for neurotoxic evaluation and biomedical application of AgNPs.


Assuntos
Nanopartículas Metálicas , Doenças Mitocondriais , Humanos , Prata/toxicidade , Prata/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mitocôndrias/metabolismo , Nanopartículas Metálicas/toxicidade
5.
Front Public Health ; 12: 1331753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450128

RESUMO

Introduction: Silver-releasing dressings are used in the treatment of infected wounds. Despite their widespread use, neither the amount of silver released nor the potential in vivo toxicity is known. The aim of this study was to evaluate the cytotoxic effects and the amount of silver released from commercially available dressings with infected wounds. Methods: The review was conducted according to the PRISMA statement. The Web of Science, PubMed, Embase, Scopus, and CINAHL databases were searched for studies from 2002 through December 2022. The criteria were as follows: population (human patients with infected wounds); intervention (commercial dressings with clinical silver authorized for use in humans); and outcomes (concentrations of silver ions released into tissues and plasma). Any study based on silver-free dressings, experimental dressings, or dressings not for clinical use in humans should be excluded. According to the type of study, systematic reviews, experimental, quasi-experimental, and observational studies in English, Spanish, or Portuguese were considered. The quality of the selected studies was assessed using the JBI critical appraisal tools. Studies that assessed at least 65% of the included items were included. Data were extracted independently by two reviewers. Results: 740 articles were found and five were finally selected (all of them quasi-experimental). Heterogeneity was found in terms of study design, application of silver dressings, and methods of assessment, which limited the comparability between studies. Conclusion: In vivo comparative studies of clinical dressings for control of infection lack a standardized methodology that allows observation of all the variables of silver performance at local and systemic levels, as well as evaluation of its cytotoxicity. It cannot be concluded whether the assessed concentrations of released silver in commercial dressings for the topical treatment of infected wounds are cytotoxic to skin cells. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351041, PROSPERO [CRD42022351041].


Assuntos
Prata , Infecção dos Ferimentos , Humanos , Bandagens , Bases de Dados Factuais , Íons , Prata/uso terapêutico , Prata/toxicidade , Infecção dos Ferimentos/terapia
6.
An Acad Bras Cienc ; 96(1): e20230159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451624

RESUMO

This study evaluated the median lethal concentration of silver nanoparticles and their effects in fish tambaqui Colossoma macropomum. Therefore, an acute toxicity assay was carried out in completely randomized design evaluating six different concentrations of silver nanoparticles on blood parameters of tambaqui. The silver nanoparticles were produced by chemical reduction with polyvinyl alcohol (AgNP-PVA). The lethal concentration 50% (LC50) was estimated using probit regression. The blood was collected, analyzed and the data were submitted to T-test (dying x surviving fish) and Tukey test (surviving fish). An increase in glucose, hematocrit, total plasma protein, hemoglobin, erythrocytes, leukocytes, monocytes, and neutrophils as well as reduced MCV (mean corpuscular volume) in dying fish compared to surviving fish were observed. Survived fish exposed to 187.5 µg/L showed an increase in hematocrit, MCV, and MCH and a reduction in erythrocytes, total numbers of leukocyte, thrombocyte, lymphocyte, and neutrophil. The fish exposed to concentrations below 125 µg/L, had returned the blood parameter to baselines compared to control. The estimated LC50 was 165.09 µg/L and was classified as highly toxic for the fish tambaqui. In higher concentrations, it causes an acute respiratory toxicity, but in concentrations below 125 µg/L, the fish can adapt to the stressing agent.


Assuntos
Caraciformes , Nanopartículas Metálicas , Animais , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Células Sanguíneas , Eritrócitos
7.
J Hazard Mater ; 469: 133942, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452675

RESUMO

The spread of bacteriophage-borne antibiotic resistance genes (ARGs) poses a realistic threat to human health. Nanomaterials, as important emerging pollutants, have potential impacts on ARGs dissemination in aquatic environments. However, little is known about its role in transductive transfer of ARGs mediated by bacteriophage in the presence of microplastics. Therefore, this study comprehensively investigated the influence of silver nanoparticles (AgNPs) on the transfer of bacteriophage-encoded ARGs in planktonic Escherichia coli and microplastic-attached biofilm. AgNPs exposure facilitated the phage transduction in planktonic and microplastic-attached bacteria at ambient concentration of 0.1 mg/L. Biological binding mediated by phage-specific recognition, rather than physical aggregation conducted by hydrophilicity and ζ-potential, dominated the bacterial adhesion of AgNPs. The aggregated AgNPs in turn resulted in elevated oxidative stress and membrane destabilization, which promoted the bacteriophage infection to planktonic bacteria. AgNPs exposure could disrupt colanic acid biosynthesis and then reduce the thickness of biofilm on microplastics, contributing to the transfer of phage-encoded ARGs. Moreover, the roughness of microplastics also affected the performance of AgNPs on the transductive transfer of ARGs in biofilms. This study reveals the compound risks of nanomaterials and microplastics in phage-borne ARGs dissemination and highlights the complexity in various environmental scenarios.


Assuntos
Bacteriófagos , Nanopartículas Metálicas , Humanos , Microplásticos , Plásticos , Prata/toxicidade , Bacteriófagos/genética , Plâncton/genética , Bactérias/genética , Antibacterianos/farmacologia , Genes Bacterianos , Escherichia coli/genética
8.
Environ Pollut ; 346: 123555, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369090

RESUMO

Silver nanoparticles (AgNPs) are widely used in daily life and medical fields owing to their unique physicochemical properties. Daily exposure to AgNPs has become a great concern regarding their potential toxicity to human beings, especially to the central nervous system. Ferroptosis, a newly recognized programmed cell death, was recently reported to be associated with the neurodegenerative process. However, whether and how ferroptosis contributes to AgNPs-induced neurotoxicity remain unclear. In this study, we investigated the role of ferroptosis in neurotoxic effects induced by AgNPs using in vitro and in vivo models. Our results showed that AgNPs induced a notable dose-dependent cytotoxic effect on HT-22 cells and cognitive impairment in mice as indicated by a decline in learning and memory and brain tissue injuries. These findings were accompanied by iron overload caused by the disruption of the iron transport system and activation of NCOA4-mediated autophagic degradation of ferritin. The excessive free iron subsequently induced GSH depletion, loss of GPX and SOD activities, differential expression of Nrf2 signaling pathway elements, down-regulation of GPX4 protein and production of lipid peroxides, initiating ferroptosis cascades. The mitigating effects of ferrostatin-1 and deferoxamine on iron overload, redox imbalance, neuronal cell death, impairment of mice learning and memory, Aß deposition and synaptic plasticity reduction suggested ferroptosis as a potential molecular mechanism in AgNPs-induced neurotoxicity. Taken together, these results demonstrated that AgNPs induced neuronal cell death and cognitive impairment with Aß deposition and reduction of synaptic plasticity, which were mediated by ferroptosis caused by iron-mediated lipid peroxidation. Our study provides new insights into the underlying mechanisms of AgNPs-induced neurotoxicity and predicts potential preventive strategies.


Assuntos
Disfunção Cognitiva , Ferroptose , Sobrecarga de Ferro , Nanopartículas Metálicas , Camundongos , Humanos , Animais , Prata/toxicidade , Ferroptose/fisiologia , Nanopartículas Metálicas/toxicidade , Ferro/metabolismo , Disfunção Cognitiva/induzido quimicamente
9.
Tissue Cell ; 87: 102332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367325

RESUMO

Protection from liver damage and the repercussion of that harm is thought to be crucial for reducing the number of deaths each year. This work was developed to evaluate the possible role of silver nanocomposite prepared using Nigella sativa (N. sativa) aqueous extract against the hepatic damage brought on by thioacetamide (TAA), with particular attention to how they affect the NF-κß, TNF-α, IL-1ß, and COX-2 signaling pathways. There were seven groups of male Wistar rats used as follows: control, saline, N. sativa aqueous extract (NSAE; 200 mg/kg/d), N. sativa silver nanocomposite (NS-AgNC; 0.25 mg/kg/d), TAA (100 mg/kg; thrice weekly), NSAE + TTA, and NS-AgNC + TAA, respectively. The experiment continued for six weeks. The results showed that NS-AgNPs significantly enhanced liver functions (p<0.05) (albumin, ALP, LDH, AST, total protein, ALT, and globulin) and oxidant/antioxidant biomarkers (p<0.05) (H2O2, MDA, PCC, NO, SOD, CAT, GPx, GR, GST and, GSH), contrasted with TAA group. Moreover, a significant (p<0.05) downregulation of the gene expressions (COX-2, TNF-α, IL-1ß, and NF-κß) was also achieved by using silver nanocomposite therapy. These findings have been supported by histological analysis. Collectively, NS-AgNC exhibits more prominent and well-recognized protective impacts than NSAE in modulating the anti-inflammatory, genotoxicity and oxidative stress effects against TAA-induced liver injuries.


Assuntos
Hepatopatias , Nigella sativa , Masculino , Ratos , Animais , Tioacetamida/toxicidade , Nigella sativa/metabolismo , Prata/toxicidade , Prata/metabolismo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2 , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Fígado/patologia , Hepatopatias/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo
10.
Environ Sci Pollut Res Int ; 31(13): 19206-19225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355858

RESUMO

Toxicological effects of silver nanoparticles (SNPs) in different organisms have been studied; however, interactions of SNPs with other environmental pollutants such as mercury are poorly understood. Herein, bioassay tests were performed according to ΟECD 201 guideline to assess the toxic effects induced by mercury ions (mercury chloride, MCl) on the marine microalga Chaetoceros muelleri in the presence of SNPs or silver ions (silver nitrate, SN). Acute toxicity tests displayed that the presence of SNPs or SN (0.01 mg L-1) significantly reduced the toxicity of MCl (0.001, 0.01, 0.1, 1, 10, and 100 mg L-1) and increased the IC50 of MCl from 0.072 ± 0.014 to 0.381 ± 0.029 and 0.676 ± 0.034 mg L-1, respectively. In the presence of SN or SNPs, the mercury-reducing effect on algal population growth significantly decreased. Considering the increase of IC50, the mercury toxicity decreased approximately 5.44 and 9.66 times in the presence of SNPs or SN, respectively. The chlorophyll a and c contents decreased at all exposures; however, the decrease by MCl-SNPs and MCl-SN was significantly less than MCl except at 1 mg L-1. The lowering effect of MCl-SN on chlorophyll contents was less than MCl and MCl-SNPs. MCl exposure induced significant raises in total protein content (TPC) at concentrations < 0.01mg  L-1, with a maximum of ~ 70.83% attained at 100 mg L-1. The effects of MCl-SNPs and MCl-SN on TPC were significantly less than MCl. Total lipid content (TLC) at all MCl concentrations was higher than the control, while at coexposure to MCl-SN, TLC did not change until 0.01 mg L-1 compared with the control. The effects of MCl-SN and MCL-SNPs on TPC and TLC were in line with toxicity results, and were significantly less than those of MCl individually, confirming their antagonistic effects on MCl. The morphological changes of algal cells and mercury content of the cell wall at MCl-SN and MCl-SNPs were mitigated compared with MCl exposure. These findings highlight the mitigatory impacts of silver species on mercury toxicity, emphasizing the need for better realizing the mixture toxicity effects of pollutants in the water ecosystem.


Assuntos
Poluentes Ambientais , Mercúrio , Nanopartículas Metálicas , Microalgas , Poluentes Químicos da Água , Mercúrio/toxicidade , Clorofila A/metabolismo , Microalgas/metabolismo , Nanopartículas Metálicas/toxicidade , Ecossistema , Prata/toxicidade , Poluentes Ambientais/toxicidade , Íons , Poluentes Químicos da Água/toxicidade
11.
Ecotoxicol Environ Saf ; 273: 116137, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417314

RESUMO

Silver nanoparticles (AgNPs) have wide clinical applications because of their excellent antibacterial properties; however, they can cause liver inflammation in animals. Macrophages are among the main cells mediating inflammation and are also responsible for the phagocytosis of nanomaterials. The NLRP3 inflammasome is a major mechanism of inflammation, and its activation both induces cytokine release and triggers inflammatory cell death (i.e., pyroptosis). In previous studies, we demonstrated that mitophagy activation plays a protective role against AgNP-induced hepatotoxicity. However, the exact molecular mechanisms underlying these processes are not fully understood. In this study, we demonstrate that AgNP exposure induces NLRP3 inflammasome activation, mitochondrial damage and pyroptosis in vivo and in vitro. NLRP3 silencing or inhibiting mitochondrial reactive oxygen species (ROS) overproduction reduces PINK1-Parkin-mediated mitophagy. Meanwhile, the inhibition of mitophagy ROS production, mitochondrial, NLRP3-mediated inflammation, and pyroptosis in RAW264.7 cells were more pronounced than in the control group. These results suggest that PINK1-Parkin-mediated mitophagy plays a protective role by reducing AgNP-induced mitochondrial ROS and subsequent NLRP3 inflammasome activation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas Metálicas , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Mitofagia , Inflamação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases
12.
Aquat Toxicol ; 268: 106865, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377931

RESUMO

Freshwater acidification is a global environmental challenge, yet the effects of acidic water on fish resistance to toxic Ag+ remain an unexplored area. To address this knowledge gap, zebrafish embryos were exposed to different concentrations (0 (control), 0.1, and 0.25 mg/L) of AgNO3 under pH 5 or 7 for 7 days. Notably, AgNO3 at 0.25 mg/L resulted in 100 % mortality in both pH conditions, while AgNO3 at 0.1 mg/L resulted in higher mortality at pH 5 (85 %) compared to pH 7 (20 %), indicating that acidic water enhanced Ag+ toxicity. Several parameters, including body length, inner ear (otic vesicle and otolith) and yolk sac areas, lateral line hair cell number and morphology, the number of ionocytes (H+-ATP-rich cells and Na+/K+-ATP-rich cells), and ion contents (Ag+, Na+, and Ca2+) were assessed at 96 h (day 4) to investigate individual and combined effects of Ag+ and acid on embryos. Acid alone did not significantly alter most parameters, but it decreased the yolk sac area and increased the ionocyte number. Conversely, Ag+ alone caused reductions in most parameters, including body length, the inner ear area, hair cell number, and ionocyte number. Combining acid and Ag+ resulted in greater suppression of the otolith area, hair cell number, and Na+/Ca2+ contents. In conclusion, acidification of freshwater poses a potential risk to fish embryo viability by increasing their susceptibility to silver toxicity, specifically affecting sensory function and ion regulation.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Prata/toxicidade , Água/farmacologia , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Ácidos/metabolismo , Trifosfato de Adenosina/metabolismo
13.
Toxicol Ind Health ; 40(4): 206-219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358440

RESUMO

Co-exposure to noise and nanomaterials, such as silver nanoparticles (Silver-NPs), is a common occurrence in today's industries. This study aimed to investigate the effects of exposure to noise and the administration of silver-NPs on the liver tissue of rats. Thirty-six adult male albino Wistar rats were randomly divided into six groups: a control group (administered saline intraperitoneally), two groups administered different doses of Silver-NPs (50 mg/kg and 100 mg/kg, 5 days a week for 28 days), two groups exposed to noise in addition to Silver-NPs (at the same doses as mentioned before), and a group exposed only to noise (104 dB, 6 hours a day, 5 days a week for 4 weeks). Blood samples were taken to assess hepatic-functional alterations, such as serum ALP, ALT, and AST levels. Additionally, biochemical parameters (MDA, GPX, and CAT) and the silver concentration in the liver were measured. Histopathological analysis, mRNA expression (P53 and NF-κB), protein expression (CYP450), and liver weight changes in rats were also documented. The study found that the administration of Silver-NPs and exposure to noise resulted in elevated levels of ALP, ALT, AST, and MDA (p < .01). Conversely, GPX and CAT levels decreased in all groups compared with the control group (p < .0001). There was a significant increase (p < .05) in liver weight and silver concentration in the liver tissues of groups administered Silver-NPs (50 mg/kg) plus noise exposure, Silver-NPs (100 mg/kg), and Silver-NPs (100 mg/kg) plus noise exposure, respectively. The expression rate of P53, NF-κB, and cytochromes P450 (CYPs-450) was increased in the experimental groups (p < .05). These findings were further confirmed by histopathological changes. In conclusion, this study demonstrated that exposure to noise and the administration of Silver-NPs exacerbated liver damage by increasing protein and gene expression, causing hepatic necrosis, altering biochemical parameters, and affecting liver weight.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas Metálicas , Nanopartículas , Ratos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Fígado , Ratos Wistar , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Transdução de Sinais , Estresse Oxidativo
14.
Chem Res Toxicol ; 37(2): 292-301, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38189788

RESUMO

This study aims to enhance the understanding of the environmental risks associated with nanomaterials, particularly nanofibers. Previous research suggested that silver fibers exhibit higher toxicity (EC50/48h 1.6-8.5 µg/L) compared to spherical silver particles (EC50/48h 43 µg/L). To investigate the hypothesis that toxicity is influenced by the morphology and size of nanomaterials, various silver nanofibers with different dimensions (length and diameter) were selected. The study assessed their toxicity toward Daphnia magna using the 48 h immobilization assay. The EC50 values for the different fibers ranged from 122 to 614 µg/L. Subsequently, the study quantified the uptake and distribution of two representative nanofibers in D. magna neonates by employing digestion and imaging mass spectrometry in the form of laser-ablation-ICP-MS. A novel sample preparation method was utilized, allowing the analysis of whole, intact daphnids, which facilitated the localization of silver material and prevented artifacts. The results revealed that, despite the similar ecotoxicity of the silver fibers, the amount of silver associated with the neonates differed by a factor of 2-3. However, both types of nanofibers were primarily found in the gut of the organisms. In conclusion, the findings of this study do not support the expectation that the morphology or size of silver materials affect their toxicity to D. magna.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , 60496 , Prata/toxicidade , Prata/química , Daphnia , Poluentes Químicos da Água/toxicidade , Nanopartículas Metálicas/química
15.
Sci Prog ; 107(1): 368504231221670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232951

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) such as 7, 12-dimethylbenzneanthracene (DMBA), due to long-term bioaccumulation cause serious physiological processes and behavioral dysfunctions such as cancer, ageing, and hypertension. Silk sericin (SS) is instrumental in cancer applications due to presence of flavonoids and carotenoids which are natural pigments, present in the layer of sericin that has antioxidant and antityrosinase activity. It reduces oxidative stress and suppresses cancer cytokines while interacting with reactive oxygen species (ROS) to stand against lipid peroxidation. Recent research was focused to calculate the pharmacological intervention of sericin-conjugated silver nanoparticles (S-AgNO3 NPs) against DMBA-induced toxicity. For this purpose, SS protein was extracted from silkworm cocoons by degumming process and the prepared S-AgNO3 NPs via a green synthesis. In female albino mice, a total of 50 mg/kg oral administration of DMBA was used for the induction of toxicity which required almost 8 to 10 weeks approximately. After 60 days of experimentation, mice were dissected, blood samples were collected for further hematological and biochemical analysis and were euthanized via cervical dislocation. There was a significant rise in the level of red blood cells, platelets, lymphocytes, and hemoglobin at the highest applied concentration of sericin and its nanoparticles. Similarly, a reasonable decline was observed in the level of white blood cells, neutrophils, eosinophils, and monocytes as compared to the cancer-inducing group. The level of glutathione, lactate dehydrogenase, and alkaline phosphatase as well as immunoglobulins such as immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) were significantly reduced in all treatment groups as compared to the DMBA-induced group. Substantial effects were demonstrated in response to S-AgNO3 NPs II (T) at the highest concentrations (200 mg/kg, BW) as follows: glutathione (2.42 ± 0.26 µmol/L), lactate dehydrogenase (493.6 ± 5.78 U/L), alkaline phosphatase (158.4 ± 6.35 U/L), IgA (4.22 ± 0.19 g/L), IgG (70 ± 1.70 g/L), and IgM (4.76 ± 0.12). The histopathological study of the liver, kidneys, and brain revealed that the DMBA-induced group showed cytotoxic effects against all selected organs of mice that were recovered by treatment of selective compounds but highly effective recovery was seen in S-AgNO3 NPs II (T). These results concluded that silk S-AgNO3 NPs showed significant pharmacological potential against cancer-inducing toxicity.


Assuntos
Nanopartículas Metálicas , Neoplasias , Sericinas , Feminino , Camundongos , Animais , Sericinas/uso terapêutico , Sericinas/toxicidade , Prata/toxicidade , Camundongos Endogâmicos BALB C , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Fosfatase Alcalina , Seda/química , Glutationa/metabolismo , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Lactato Desidrogenases
16.
Environ Sci Pollut Res Int ; 31(6): 8400-8428, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182947

RESUMO

Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/toxicidade , Biodegradação Ambiental , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
17.
Toxicol Ind Health ; 40(3): 125-133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243157

RESUMO

Increasing applications of silver nanoparticles (AgNPs) in multiple products like cosmetics, medicines, drugs, paints, and other new materials have raised concern for their toxic effects on living beings and the surrounding environment. In the present study, cytotoxicity and genotoxicity of AgNPs synthesized using plant flavonoid (Naringin) as a reducing agent were investigated on human promyelocytic leukemic (HL-60) cells and human blood as an in vitro model. The LC50 of AgNPs was found to be 4.85 µM. Dose-dependent increase in cell death and caspase activity was observed in the presence of AgNPs. The comet assay showed a 60%-70% (p < .05) increase in tail DNA at 0.48 and 0.96 µM AgNPs. CBMN in PBMCs also confirmed the genotoxic potential of AgNPs-induced DNA damage. AgNPs resulted in 1.5-1.54 fold (p < .05) increase in the level of ROS in HL-60 cells after 12 h of exposure. AgNP showed toxicity in human cells through ROS generation and cellular damage through membrane dysfunction, caspase activation, apoptosis, and DNA damage.


Assuntos
Flavanonas , Nanopartículas Metálicas , Prata , Humanos , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Flavonoides , Células Sanguíneas/metabolismo , Caspases
18.
Toxicology ; 502: 153734, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38290605

RESUMO

Silver nanoparticles (AgNPs) are used increasingly often in the biomedical field, but their potential deleterious effects on the cardiovascular system remain to be elucidated. The primary aim of this study was to evaluate the toxic effects, and the underlying mechanisms of these effects, of AgNPs on human umbilical vein endothelial cells (HUVECs), as well as the protective role of N-acetylcysteine (NAC) against cytotoxicity induced by AgNPs. In this study, we found that exposure to AgNPs affects the morphology and function of endothelial cells which manifests as decreased cell proliferation, migration, and angiogenesis ability. Mechanistically, AgNPs can induce excessive cellular production of reactive oxygen species (ROS), leading to damage to cellular sub-organs such as mitochondria and lysosomes. More importantly, our data suggest that AgNPs causes autophagy defect, inhibits mitophagy, and finally activates the mitochondria-mediated apoptosis signaling pathway and evokes cell death. Interestingly, treatment with ROS scavenger-NAC can effectively suppress AgNP-induced endothelial damage.Our results indicate that ROS-mediated mitochondria-lysosome injury and autophagy dysfunction are potential factors of endothelial toxicity induced by AgNPs. This study may provide new evidence for the cardiovascular toxicity of AgNPs and serve as a reference for the safe use of nanoparticles(NPs) in the future.


Assuntos
Acetilcisteína , Nanopartículas Metálicas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Autofagia , Células Endoteliais da Veia Umbilical Humana , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Sobrevivência Celular
19.
Ecotoxicol Environ Saf ; 269: 115785, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056119

RESUMO

Silver nanoparticles (AgNPs) are widely used in daily life and industry because of their excellent antibacterial properties. AgNPs can exist in wastewater in various forms, such as Ag+, Ag2SO4, Ag2CO3, Ag2S, Ag2O, and AgCl. To assess the potential environmental risk of AgNPs and various forms of Ag, their toxic effects were investigated using the common denitrifier species Pseudomonas stutzeri (P. stutzeri). The inhibitory effect of AgNPs and various forms of Ag on P. stutzeri growth and its denitrification performance occurred in a concentration-dependent manner. The denitrification efficiency of P. stutzeri decreased from 95%∼97% to 89∼95%, 74∼95%, and 56∼85% under low, medium, and high exposure doses, respectively, of AgNPs and various forms of Ag. The changes in cell membrane morphology and increases in lactate dehydrogenase (LDH) release indicated that AgNPs and various forms of Ag damaged the cell membrane of P. stutzeri. Oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased glutathione (GSH) levels. Overall, this study will help elucidate the impact of AgNPs and their transformation products on nitrogen removal efficiency in wastewater biological treatment systems.


Assuntos
Nanopartículas Metálicas , Pseudomonas stutzeri , Prata/toxicidade , Pseudomonas stutzeri/metabolismo , Nanopartículas Metálicas/toxicidade , Desnitrificação , Águas Residuárias , Nitrogênio , Antioxidantes/metabolismo
20.
Sci Total Environ ; 912: 168443, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37956846

RESUMO

Silver nanoparticles (AgNPs) and antibiotics inevitably co-exist in water environment. Nonetheless, little is known regarding the interactions between AgNPs and antibiotics or the effects of AgNPs on environmental behavior of antibiotics, particularly on sunlight-driven transformation. In the present work, we found that AgNPs obviously inhibit the photochemical decay of chlortetracycline (CTC), and CTC boosts the dissolution of AgNPs. With the help of electron paramagnetic resonance (EPR) and quenching experiment, we ascertained that these results originated from the competition between AgNPs against CTC for capturing 1O2 generated from CTC photosensitization. 1O2 reacting with CTC contributed mostly to CTC photodegradation, while 1O2 as well reacting with AgNPs leads to release of Ag+. When compared to reaction of 1O2 with CTC, 1O2 is prone to react with AgNPs, based on lower Gibbs free energy of AgNPs reacting with 1O2. Therefore, upon CTC co-existing with AgNPs, the release of Ag+ was accelerated and the photodegradation of CTC was inhibited obviously. Furthermore, the accelerated release of Ag+ significantly increased their toxicity toward E. coli cells under simulate sunlight irradiation. Overall, the findings demonstrate how AgNPs interact with CTC and how these interactions affect the environmental behaviors of CTC or AgNPs, allowing more accurate assessments of the risk to ecosystems posed by AgNPs coexisting with antibiotics.


Assuntos
Clortetraciclina , Nanopartículas Metálicas , Clortetraciclina/toxicidade , Fotólise , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Escherichia coli , Ecossistema , Antibacterianos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...